Re: The Ecosystem is Moving

Moxie Marlinspike, the creator of Signal gave a talk at 36C3 on Saturday titled “The ecosystem is moving”.

The Fahrplan description of that talk reads as follows:

Considerations for distributed and decentralized technologies from the perspective of a product that many would like to see decentralize.

Amongst an environment of enthusiasm for blockchain-based technologies, efforts to decentralize the internet, and tremendous investment in distributed systems, there has been relatively little product movement in this area from the mobile and consumer internet spaces.

This is an exploration of challenges for distributed technologies, as well as some considerations for what they do and don’t provide, from the perspective of someone working on user-focused mobile communication. This also includes a look at how Signal addresses some of the same problems that decentralized and distributed technologies hope to solve.

https://fahrplan.events.ccc.de/congress/2019/Fahrplan/events/11086.html

Basically the talk is a reiteration of some arguments from a blog post with the same title he posted back in 2016.

In his presentation, Marlinspike basically states that federated systems have the issue of being frozen in time while centralized systems are flexible and easy to change.

As an example, Marlinspike names HTTP/1.1, which was released in 1999 and on which we are stuck on ever since. While it is true that a huge part of the internet is currently running on HTTP 1.0 and 1.1, one has to consider that its successor HTTP/2.0 was only released in 2015. 4 / 5 years are not a long time to update the entirety of the internet, especially if you consider the fact that the big browser vendors announced to only make their browsers work with HTTP/2.0 sites when they are TLS encrypted.

Marlinspike then goes on listing 4 expectations that advocates of federated systems have, namely privacy, censorship resistance, availability and control. This is pretty accurate and matches my personal expectations pretty well. He then argues, that Signal as a centralized application can fulfill those expectations as well, if not better than a decentralized system.

Privacy

Privacy is often expected to be provided by the means of data ownership, says Marlinspike. As an example he mentions email. He argues that even though he is self-hosting his emails, “each and every mail has GMail at the other end”.

I agree with this observation and think that this is a real problem. But the answer to this problem would logically be that we need to increase our efforts to change that by reducing the number of GMail accounts and increasing the number of self-hosted email servers, right? This is not really an argument for centralization, where each and every message is guaranteed to have the same service at the other end.

I also agree with his opinion that a more effective tool to gain privacy is good encryption. He obviously brings the point that email encryption is unusable, (hinting to PGP probably), totally ignoring modern approaches to email encryption like autocrypt.

Censorship resistance

Federated systems are censorship resistant. At least that is the expectation that advocates of federated systems have. Every time a server gets blocked, the user just simply switches to another server. The issue that Marlinspike points out is, that every time this happens, the user loses his entire social graph. While this is an issue, there are solutions to this problem, one being nomadic identities. If some server goes down the user simply migrates to another server, taking his contacts with him. Hubzilla does this for example. There are also import/export features present in most services nowadays thanks to the GDPR. XMPP offers such a solution using XEP-0277.

But lets take a look at how Signal circumvents censorship according to Marlinspike. He proudly presents Domain Fronting as the solution. With domain fronting, the client connects to some big service which is costly to block for a censor and uses that as a proxy to connect to the actual server. While this appears to be a very elegant solution, Marlinspike conceals the fact that Google and Amazon pretty quickly intervened and stopped Signal from using their domains.

With Google Cloud and AWS out of the picture, it seems that domain fronting as a censorship circumvention technique is now largely non-viable in the countries where Signal had enabled this feature.

https://signal.org/blog/looking-back-on-the-front/

Notice that above quote was posted by Marlinspike himself more than one and a half years ago. Why exactly he brings this as an argument remains a mystery to me.

Update: Apparently Signal still successfully uses Domain Fronting, just with content delivery networks other than Google and Amazon.

And even if domain fronting was an effective way to circumvent censorship, it could also be applied to federated servers as well, adding an additional layer of protection instead of solely relying on it.

But what if the censor is not a foreign nation, but instead the nation where your servers are located? What if the US decides to shutdown signal.org for some reason? No amount of domain fronting can protect you from police raiding your server center. Police confiscating each and every server of a federated system (or even a considerable fraction of it) on the other hand is unlikely.

Availability

This brings us nicely to the next point on the agenda, availability.

If you have a centralized service than you want to move that centralized service into two different data centers. And the way you did that was by splitting the data up between those data centers and you just halved your availability, because the mean time between failures goes up since you have two different data centers which means that it is more likely to have an outage in one of those data centers in any given moment.

Moxie Marlinspike in his 36c3 talk “The Ecosystem is Moving”

For some reason Marlinspike confuses a decentralized system with a centralized, but distributed system. It even reads “Centralized Service” on his slides… Decentralization does not equal distribution.

A federated system would obviously not be fault free, as servers naturally tend to go down, but an outage only causes a small fraction of the network to collapse, contrary to a total outage of centralized systems. There even are techniques to minimize the loss of functionality further, for example distributed chat rooms in the matrix protocol.

Control

The advocates argument of control says that if a service provider behaves undesirably, you simply switch to another service provider. Marlinspike rightfully asks the question how it then can be that many people still use Yahoo as their mail provider. Indeed that is a good question. I guess the only answer I can come up with is that most people probably don’t care enough about their email to make the switch. To be honest, email is kind of boring anyways 😉

XMPP

Next Marlinspike talks about XMPP. He (rightfully) notes that due to XMPPs extensibility there is a morass of XEPs and that those don’t really feel consistent.

The XMPP community already recognized the problem that comes with having that many XEPs and tries to solve this issue by introducing so called compliance suites. These are annually published documents that contain a list of XEPs that are considered vitally important for clients or servers. These suites act as maps that point a way through the XEP jungle.

Next Marlinspike states that the XMPP protocol still fails to be a suitable option for mobile devices. This statement is plain wrong and was already debunked in a blog post by Daniel Gultsch back in 2016. Gultsch develops an XMPP client for Android which is totally usable and generally has lower battery consumption than Signal has. Conversations implements all of the XEPs listed in the compliance suites to be required for mobile clients. This shows that implementing a decent mobile client for a federated system can be done and there is a recipe for it.

What Marlinspike could have pointed out instead is that the XMPP community struggles to come up with a decent iOS client. That would have been a fair argument, but spreading FUD about the XMPP protocol as a whole is unfair and dishonest.

Luckily the audience of the talk didn’t fully buy into Marlinspikes weaker arguments as demonstrated by some entertaining questions during the QA afterwards.

What Marlinspike is right about though is that developing a federated system is harder than doing a centralized service. You as the developer have control over the whole system and subsequently over the users. However this is actually the reason why we, the community of decentralized systems and federated protocols do what we do. In the words of J.F. Kennedy, we do these things…

…not because they are easy, but because they are hard…

… or simply because they are right.

Pitfalls for OMEMO Implementations – Part 1: Inactive Devices

Smack’s OMEMO implementation received a security audit a while ago (huge thanks to the Guardian Project for providing the funding!). Radically Open Security, a non-profit pentesting group from the Netherlands focused on free software and ethical hacking went through the code in great detail to check its correctness and to search for any vulnerabilities. In the end they made some findings, although I wouldn’t consider them catastrophically bad (full disclosure – its my code, so I might be biased :D). In this post I want to go over two of the finding and discuss, what went wrong and how the issue was fixed.

Finding 001: Inactive Devices break Forward Secrecy

Inactive devices which no longer come online retain old chaining keys, which, if compromised, break
confidentiality of all messages from that key onwards.

Penetration Test Report – Radically Open Security
  • Vulnerability Type: Loss of Forward Secrecy.
  • Threat Level: High

Finding 003: Read-Only Devices Compromise Forward Secrecy

Read-only devices never update their keys and thus forfeit forward security.

Penetration Test Report – Radically Open Security
  • Vulnerability Type: Loss of Forward Secrecy.
  • Threat Level: Elevated

These vulnerabilities have the same cause and can be fixed by the same patch. They can happen, if a contact has a device which doesn’t come online (Finding 001), or just doesn’t respond to messages (Finding 003) for an extended period of time. To understand the issue, we have to look deeper into how the cryptography behind the double ratchet works.

Background

In OMEMO, your device has a separate session with every device it sends messages to. In case of one-to-one chat, your phone may have a session with your computer (you can read messages you sent from your phone on your computer too), with your contacts phone, your contacts computer and so on.

In each session, the cryptography happens in a kind of a ping pong way. Lets say you send two messages, then your contact responds with 4 messages, then its your turn again to send some messages and so on and so forth.

To better illustrate whats happening behind the scenes in the OMEMO protocol, lets compare an OMEMO chat with a discussion which is moderated using a “talking stick” (or “speachers staff”). Every time you want to send a message, you acquire the talking stick. Now you can send as many messages as you want. If another person wants to send you a message, you’ve got to hand them the stick first.

Now, cryptographically OMEMO is based on the double ratchet. As the name suggests, the double ratchet consists of two ratchets; the Diffie-Hellman-Ratchet and the Symmetric-Key-Ratchet.

The Symmetric-Key-Ratchet is responsible to encrypt every message you send with a new key. Roughly speaking, this is done by deriving a fresh encryption key from the key which was used to encrypt the previous message you sent. This procedure is called Key Derivation Function Chain (KDF-Chain). The benefit of this technique is, that if an attacker manages to break the key of a message, they cannot use that key to decrypt any previous messages (this is called “forward secrecy“). They can however use that key to derive the message keys of following messages, which is bad.

Functional Principle of a Key Derivation Function Chain

This is where the Diffie-Hellman-Ratchet comes into play. It replaces the symmetric ratchet key every time the “talking stick” gets handed over. Whenever you pass it to your contact (by them sending a message to you), your device executes a Diffie-Hellman key exchange with your contact and the result is used to generate a new key for the symmetric ratchet. The consequence is, that whenever the talking stick gets handed over, the attacker can no longer decrypt any following messages. This is why the protocol is described as “self healing”. The cryptographic term is called “future secrecy“.

Functional Principle of the Diffie-Hellman Ratchet Algorithm

Vulnerability

So, what’s wrong with this technique?

Well, lets say you have a device that you used only once or twice with OMEMO and which is now laying in the drawer, collecting dust. That device might still have active sessions with other devices. The problem is, that it will never acquire the talking stick (it will never send a message). Therefore the Diffie-Hellman-Ratchet will never be forwarded, which will lead to the base key of the Symmetric-Key-Ratchet never being replaced. The consequence is, that once an attacker manages to break one key of the chain, they can use that key to derive all following keys, which will get them access to all messages that device receives in that session. The property of “forward secrecy” is lost.

Smack-omemo already kind of dealt with that issue by removing inactive devices from the device list after a certain amount of time (two weeks). This does however only include own devices, not inactive devices of a contact. In the past I tried to fix this by ignoring inactive devices of a contact, by refusing to encrypt message for them. However, this lead to deadlocks, where two devices were mutually ignoring each other, resulting in a situation where no device could send a message to the other one to recover. As a consequence, Smack omitted deactivating stale contacts devices, which resulted in the vulnerability.

The Patch

This problem could not really be solved without changing the XEP (I’d argue). In my opinion the XEP must specify an explicit way of dealing with inactive devices. Therefore I proposed to use message counters, which gets rid of the deadlock problem. A device is considered as read-only, if the other party sent n messages without getting a reply. That way we can guarantee, that in a worst case scenario, an attacker can get access to n messages. That magical number n would need to be determined though.
I opened a pull request against XEP-0384 which introduces these changes.

Mitigation for the issue has been merged into Smack’s source code already 🙂

As another prevention against this vulnerability, clients could send empty ping messages to forward the Diffie-Hellman-Ratchet. This does however require devices to take action and does not work with clients that are permanently offline though. Both changes would however go hand in hand to improve the OMEMO user experience and security. Smack-omemo already offers the client developer a method to send ping messages 🙂

I hope I could help any fellow developers to avoid this pitfall and spark some discussion around how to address this issue in the XEP.

Happy (ethical) Hacking!